163 research outputs found

    Odin–OSIRIS detection of the Chelyabinsk meteor

    Get PDF
    On 15 February 2013 an 11 000 ton meteor entered Earth's atmosphere southeast of Chelyabinsk, creating a large fireball at 23 km altitude. The resulting stratospheric aerosol loading was detected by the Ozone Mapping and Profiler Suite (OMPS) in a high-altitude polar belt. This work confirms the presence and lifetime of the stratospheric debris using the Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite. Although OSIRIS coverage begins in mid-March, the measurements show a belt of enhanced scattering near 35 km altitude between 50° N and 70° N. Initially, enhancements show increased scattering of up to 15% over the background conditions, decaying in intensity and dropping in altitude until they are indistinguishable from background conditions by mid-May. An inversion is also attempted using the standard OSIRIS processing algorithm to determine the extinction in the meteoric debris

    Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra

    No full text
    International audienceRecent work has shown that the retrieval of stratospheric aerosol vertical profiles is possible using limb scattered sunlight measurements at optical wavelengths. The aerosol number density profile is retrieved for an assumed particle size distribution and composition. This result can be used to derive the extinction at the measured wavelength. However, large systematic error can result from the uncertainty in the assumed size distribution when the result is used to estimate the extinction at other wavelengths. It is shown in this work that the addition of information obtained from the near infrared limb radiance profile at 1530 nm measured by the imaging module of the OSIRIS instrument yields an indication of the aerosol size distribution profile that can be used to improve the fidelity of the retrievals. A comparison of the estimated extinction profile at 1020 nm with coincident occultation measurements demonstrates agreement to within approximately 15% from 12 to 27 km altitude

    Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison

    Get PDF
    The scattered sunlight measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin spacecraft are used to retrieve vertical profiles of stratospheric aerosol extinction at 750 nm. The recently released OSIRIS Version 5 data product contains the first publicly released stratospheric aerosol extinction retrievals, and these are now available for the entire Odin mission, which extends from the present day back to launch in 2001. A proof-of-concept study for the retrieval of stratospheric aerosol extinction from limb scatter measurements was previously published and the Version 5 data product retrievals are based on this work, but incorporate several important improvements to the algorithm. One of the primary changes is the use of a new retrieval vector that greatly improves the sensitivity to aerosol scattering by incorporating a forward modeled calculation of the radiance from a Rayleigh atmosphere. Additional improvements include a coupled retrieval of the effective albedo, a new method for normalization of the retrieval vector to improve signal-to-noise, and the use of an initial guess that is representative of very low background aerosol loading conditions, which allows for maximal retrieval range. Furthermore, the Version 5 data set is compared to Stratospheric Aerosol and Gas Experiment (SAGE) III 755 nm extinction profiles during the almost four years of mission overlap from 2002 to late 2005. The vertical structure in coincident profile measurements is well correlated and the statistics on a relatively large set of tight coincident measurements show agreement between the measurements from the two instruments to within approximately 10% throughout the 15 to 25 km altitude range, which covers the bulk of the stratospheric aerosol layer for the mid and high latitude cases studied here

    Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

    Get PDF
    We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds

    11-year solar cycle influence on OH (3-1) nightglow observed by OSIRIS

    Get PDF
    In the mesosphere, the vibrationally excited hydroxyl layer is sensitive to changes in incoming solar flux. An enhanced photodissociation of molecular oxygen will lead to more atomic oxygen production, thus we expect the OH layer emission rate to be positively with the Lyman-α flux and the emission height to be negatively correlated. The Optical Spectrograph and InfraRed Imager System (OSIRIS) has recorded the Meinel band centred at 1.53 μm from 2001 to 2015. In this study, we show how the 11-year solar cycle signature manifests itself in this data set, in terms of OH zenith emission rate and emission height. As expected, the emission height is negatively correlated with the Lyman-α flux at all latitudes. The zenith emission rate is positively correlated with the Lyman-α flux at most latitudes except near the equator. By the means of a time dependent photochemical model, we show that the changing local time sampling of the Odin satellite was the cause of the observed distortion of the solar cycle signature near the equator

    Highlights from the 11-Year Record of Tropospheric Ozone from OMI/MLS and Continuation of that Long Record Using OMPS Measurements

    Get PDF
    Since October 2004 the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite have provided over 11 years of continuous tropospheric ozone measurements. These OMI/MLS measurements have been used in many studies to evaluate dynamical and photochemical effects caused by ENSO, the Madden-Julian Oscillation (MJO) and shorter timescales, as well as long-term trends and the effects of deep convection on tropospheric ozone. Given that the OMI and MLS instruments have now extended well beyond their expected lifetimes, our goal is to continue their long record of tropospheric ozone using recent Ozone Mapping Profiler Suite (OMPS) measurements. The OMPS onboard the Suomi National Polar-orbiting Partnership NPP satellite was launched on October 28, 2011 and is comprised of three instruments: the nadir mapper, the nadir profiler, and the limb profiler. Our study combines total column ozone from the OMPS nadir mapper with stratospheric column ozone from the OMPS limb profiler to measure tropospheric ozone residual. The time period for the OMPS measurements is March 2012 present. For the OMPS limb profiler retrievals, the OMPS v2 algorithm from Goddard is tested against the University of Saskatchewan (USask) Algorithm. The retrieved ozone profiles from each of these algorithms are evaluated with ozone profiles from both ozonesondes and the Aura Microwave Limb Sounder (MLS). Effects on derived OMPS tropospheric ozone caused by the 2015-2016 El Nino event are highlighted. This recent El Nino produced anomalies in tropospheric ozone throughout the tropical Pacific involving increases of approximately 10 DU over Indonesia and decreases approximately 5-10 DU in the eastern Pacific. These changes in ozone due to El Nino were predominantly dynamically-induced, caused by the eastward shift in sea-surface temperature and convection from the western to the eastern Pacific

    Stratospheric-trace-gas-profile retrievals from balloon-borne limb imaging of mid-infrared emission spectra

    Get PDF
    The Limb Imaging Fourier Transform Spectrometer Experiment (LIFE) instrument is a balloon-borne prototype of a satellite instrument designed to take vertical images of atmospheric limb emission spectra in the 700–1400 cm−1 wavenumber range from the upper-troposphere–lower-stratosphere (UTLS) altitude region of the atmosphere. The prototype builds on the success of past and existing instruments while reducing the complexity of the imaging design. This paper details the results of a demonstration flight on a stabilized stratospheric balloon gondola from Timmins, Canada, in August 2019. Retrievals of vertical trace gas profiles for the important greenhouse gases H2O, O3, CH4, and N2O, as well as HNO3, are performed using an optimal estimation approach and the SASKTRAN radiative transfer model. The retrieved profiles are compared to approximately coincident observations made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) solar occultation and Microwave Limb Sounder (MLS) instruments. An evaluation of the LIFE measurements is performed, and areas of improvement are identified. This work increases the overall technical readiness of the approach for future balloon, aircraft, and space applications.</p

    Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012

    Get PDF
    Vertical profiles of the rate of linear change (trend) in the altitude range 15–50 km are determined from decadal O<sub>3</sub> time series obtained from SCIAMACHY<sup>1</sup>/ENVISAT<sup>2</sup> measurements in limb-viewing geometry. The trends are calculated by using a multivariate linear regression. Seasonal variations, the quasi-biennial oscillation, signatures of the solar cycle and the El Niño–Southern Oscillation are accounted for in the regression. The time range of trend calculation is August 2002–April 2012. A focus for analysis are the zonal bands of 20° N–20° S (tropics), 60–50° N, and 50–60° S (midlatitudes). In the tropics, positive trends of up to 5% per decade between 20 and 30 km and negative trends of up to 10% per decade between 30 and 38 km are identified. Positive O<sub>3</sub> trends of around 5% per decade are found in the upper stratosphere in the tropics and at midlatitudes. Comparisons between SCIAMACHY and EOS MLS<sup>3</sup> show reasonable agreement both in the tropics and at midlatitudes for most altitudes. In the tropics, measurements from OSIRIS<sup>4</sup>/Odin and SHADOZ<sup>5</sup> are also analysed. These yield rates of linear change of O<sub>3</sub> similar to those from SCIAMACHY. However, the trends from SCIAMACHY near 34 km in the tropics are larger than MLS and OSIRIS by a factor of around two. <br><br> <br><br> <sup>1</sup> SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY <sup>2</sup> European environmental research satellite <sup>3</sup> Earth Observing System (EOS) Microwave Limb Sounder (MLS) <sup>4</sup> Optical Spectrograph and InfraRed Imager System <sup>5</sup> Southern Hemisphere ADditional OZonesonde

    Trend and variability in ozone in the tropical lower stratosphere over 2.5 solar cycles observed by SAGE II and OSIRIS

    Get PDF
    We have extended the satellite-based ozone anomaly time series to the present (December 2012) by merging SAGE II (Stratospheric Aerosol and Gas Experiment II) with OSIRIS (Optical Spectrograph and Infrared Imager System) and correcting for the small bias (~0.5%) between them, determined using their temporal overlap of 4 years. Analysis of the merged data set (1984–2012) shows a statistically significant negative trend at all altitudes in the 18–25 km range, including a trend of (−4.6 ± 2.6)% decade<sup>−1</sup> at 19.5 km where the relative standard error is a minimum. We are also able to replicate previously reported decadal trends in the tropical lower-stratospheric ozone anomaly based on SAGE II observations. Uncertainties are smaller on the merged trend than the SAGE II trend at all altitudes. Underlying strong fluctuations in ozone anomaly due to El Niño–Southern Oscillation (ENSO), the altitude-dependent quasi-biennial oscillation, and tropopause pressure need to be taken into account to reduce trend uncertainties and, in the case of ENSO, to accurately determine the linear trend just above the tropopause. We also compare the observed ozone trend with a calculated trend that uses information on tropical upwelling and its temporal trend from model simulations, tropopause pressure trend information derived from reanalysis data, and vertical profiles from SAGE II and OSIRIS to determine the vertical gradient of ozone and its trend. We show that the observed trend agrees with the calculated trend and that the magnitude of the calculated trend is dominated by increased tropical upwelling, with minor but increasing contribution from the vertical ozone gradient trend as the tropical tropopause is approached. Improvements are suggested for future regression modelling efforts which could reduce trend uncertainties and biases in trend magnitudes, thereby allowing accurate trend detection to extend below 18 km
    • …
    corecore